skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lamuta, Caterina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Flexible optoelectronic devices have attracted considerable attention due to their low weight, portability, and ease of integration with other devices. However, major issues still exist: they are subject to repeated stresses, which often leads to damage; and the current fabrication methods such as photolithography and nano-imprint lithography can be very time-consuming or costly. This work aims to develop a novel cost-effective and time-efficient laser metasurface fabrication (LMF) technique for production of flexible optoelectronic devices. The experimental results have shown that the laser patterned flexible surfaces exhibit high visible transmittance, low sheet resistance, and extraordinary mechanical durability under repeated bending cycles. The laser patterned flexible surfaces have also demonstrated the potential to be utilized as heaters, which renders them new de-icing or de-fogging applications. This innovative laser patterning method will provide a new avenue for fabrication of multifunctional optoelectronic devices. 
    more » « less
  2. Abstract Cutaneous muscles drive the texture‐modulation behavior of cephalopods by protruding several millimeters out of the skin. Inspired by cephalopods, a self‐morphing, stretchable smart skin containing embedded‐printed electrodes and actuated by Twisted Spiral Artificial Muscles (TSAMs) is proposed. Electrothermally actuated TSAMs are manufactured from inexpensive polymer fibers to mimic the papillae muscles of cephalopods. These spirals can produce strains of nearly 2000% using a voltage of only 0.02 V mm−1. Stretchable and low‐resistance liquid metal electrodes are embedded‐printed inside the self‐morphing skin to facilitate the electrothermal actuation of TSAMs. Theoretical and numerical models are proposed to describe the embedded printing of low‐viscosity Newtonian liquid metals as conductive electrodes in a soft elastomeric substrate. Experimental mechanical tests are performed to demonstrate the robustness and electrical stability of the electrodes. Two smart skin prototypes are fabricated to highlight the capabilities of the proposed self‐morphing system, including a texture‐modulating wearable soft glove and a waterproof skin that emulates the texture‐modulation behavior of octopi underwater. The proposed self‐morphing stretchable smart skin can find use in a wide range of applications, such as refreshable Braille displays, haptic feedback devices, turbulence tripping, and antifouling devices for underwater vehicles. 
    more » « less
  3. Abstract The skin of the cephalopod is a 3D display, where the papillae muscles control the protrusion of each voxel by several millimeters out of the skin plane, create hierarchical textures, and collectively change the overall skin pattern in a fraction of a second. A material system capable of mimicking this response using electromechanical actuation of twisted spiral artificial muscles (TSAMs) is presented in this study. TSAMs leverage the mechanics of their twisted geometry to extend out of plane by 8 mm, corresponding to 2000% strain using a voltage of only 0.02 V mm−1. They are made of polymer fibers wrapped with a helical metal wire. These actuators are assembled on a stretchable skin with the required flexible electrical connections to form an array of digital texture voxels (DTVs). The DTV array produces arbitrary 3D surface patterns on‐demand, and provides opportunities to control hydrodynamic drag, camouflage, and haptic displays. 
    more » « less